csPMI

resources-tuition-courses

AQA Computer Science A-Level
4.6.2 Classification of programming
languages
Advanced Notes

O www.pmteducation Q@@ C) PMTEducation

(——|
@@
-resources-tuition-courses

Specification:

4.6.2.1 Classification of programming languages:
Show awareness of the development of types of programming
languages and their classification into low-and high-level languages.
Know that low-level languages are considered to be:
e machine-code
e assembly language
Know that high-level languages include imperative high-level language.
Describe machine-code language and assembly language.
Understand the advantages and disadvantages of machine-code and
assembly language programming compared with high-level language
programming.
Explain the term ‘imperative high-level language’ and its relationship to
low-level languages.

O www.pmteducation Q@@ C) PMTEducation

csPMI

resources-tuition-courses

The development of types of programming languages

The limited speed and memory of early computers forced programmers to write programs
using low-level languages. These languages directly manipulated the processor, required
a great deal of effort on the part of the programmer and were prone to errors.

High-level languages were developed to allow for instructions to be communicated to a
computer’s processor, making the job of programming far easier.

Low-level languages

The earliest electronic computers could only be programmed with low-level languages.
Programs written in low-level languages are specific to the type of processor they are
written for and directly affect the computer’s processor.

There are two categories of low-level language: machine code and assembly language.

Machine code

Machine code uses only the binary digits 1 and 0 to represent instructions. This makes
programs written in machine code very long and extremely difficult for humans to
understand. Because of this, machine code programs are prone to errors and difficult to
debug.

01010101
11010110
01001011
10110110

Because machine code directly manipulates a computer’s processor, it is a very powerful
paradigm. Programmers are not constrained when using machine code. Furthermore,
there is no need to translate machine code before executing it, making the paradigm
useful for embedded systems and real-time applications where speed of execution is
paramount.

O www.pmteducation Q@@ C) PMTEducation

—
PMT
-resources-tuition-courses
Assembly language
Assembly language was developed with the intention of simplifying the process of writing
computer programs. Mnemonics, such as ADD and MOV, are used in place of the binary

instructions that machine code uses. This makes assembly language more compact and
less error prone than machine code.

STR R4, #45 Note
ADD R1, R2, 3

This example uses AQA's
MOV R2, R1 own assembly language
HALT instruction set.

Each assembly language instruction has a 1-to-1 correlation to a machine code instruction.
For example, the assembly language instruction MOV R2, R1 might be the exact
equivalent of the machine code instruction 11011101.

1 1 0 1 1 0 0 1

Two bits Two bits
representing the representing the
Four-bit identifier for the MOVE command number of a number of a
register. In this register. In this
case, 2. case, 1.

MOV R2 RT

AQA have made their own assembly language for use in
exams. You need to make sure you’re familiar with using it to
understand programs and even to write your own.

Synoptic Link

AQA's assembly language
instruction set is covered in
structure and role of the
processor and its
components under
computer organisation
and architecture.

O www.pmteducation Q@@ C) PMTEducation

(——|
(@)
‘ -resources-tuition-courses

High-level languages

High-level languages are the type of programming language that you’re most likely used to
using. Examples of high-level languages include C#, Java, Pascal, Python and VB.Net.

Unlike low-level languages, high-level languages are not
platform specific. However, high-level languages must be
translated into machine code by a compiler or an interpreter
before they can be executed.

Synoptic Link

Different types of
translators are covered in
the notes for types of

High-level languages don’t use binary digits or mnemonics program translator.

but use English instructions like “While” and mathematical

symbols like “+”. This makes high-level languages much easier for humans to learn and
understand as well as making them easier to debug.

Most high-level languages allow programmers to make use of built-in functions. These can
save vast amounts of time when programming.

Features such as named variables, indentation and Synoptic Link
commenting make programs written in high-level languages

far easier to debug than those written in low-level languages. REREREERELEERIERRE
subroutines can be assigned
names in high-level

While x < y languages.
X = X + y The importance of meaningful
identifier names is explained in
En d Whil e programming concepts under

fundamentals of programming.

High-level languages include imperative high-level languages. In a similar way to low-level
languages, imperative high-level languages are formed from instructions that specify how
the computer should complete a task, in contrast to declarative programming which
describes what a computer should do.

O www.pmteducation Q@@ C) PMTEducation

csPMI

resources-tuition-courses

High-level languages vs. low-level languages

Low-level High-level

Machine code Assembly language

Portable. Programs are

Portability Not portable. Programs are processor specific. not specific to certain

processors.

Ease of use) gntly making it easy for

understand. easier for humans to
humans to understand.
understand.
Debugging is easier Named variables,
Ease of d'fErroﬁ are v?ry . Lhatn ’ll'\|l|itp machinde.fcf:.odlet indentation and
. ifficult to spot an ut still far more difficu .

debugging correct. than with high-level commenting make

languages. debugging fairly easy.

An assembler must be
used before a program A compiler or interpreter

, . is executed, but each must be used to
Machine code is . .
Ease of . instruction has a 1-to-1 translate source code
- directly executed by . . :
execution [OCESSOrS correlation to a into object code before
P ' machine code it can be executed. This
instruction so can be time consuming.

translation is quick.

O www.pmteducation Q@@ C) PMTEducation

