

AQA Computer Science A-Level
4.6.2 Classification of programming

languages
Advanced Notes

 www.pmt.education

Specification:

4.6.2.1 Classification of programming languages:

Show awareness of the development of types of programming
languages and their classification into low-and high-level languages.

Know that low-level languages are considered to be:
● machine-code
● assembly language

Know that high-level languages include imperative high-level language.
Describe machine-code language and assembly language.
Understand the advantages and disadvantages of machine-code and

assembly language programming compared with high-level language
programming.

Explain the term ‘imperative high-level language’ and its relationship to
low-level languages.

 www.pmt.education

 The development of types of programming languages

The limited speed and memory of early computers forced programmers to write programs
using low-level languages. These languages directly manipulated the processor, required
a great deal of effort on the part of the programmer and were prone to errors .

High-level languages were developed to allow for instructions to be communicated to a
computer’s processor, making the job of programming far easier.

Low-level languages

The earliest electronic computers could only be programmed with low-level languages.
Programs written in low-level languages are specific to the type of processor they are
written for and directly affect the computer’s processor.

There are two categories of low-level language: machine code and assembly language.

Machine code
Machine code uses only the binary digits 1 and 0 to represent instructions. This makes
programs written in machine code very long and extremely difficult for humans to
understand. Because of this, machine code programs are prone to errors and difficult to
debug.

01010101
11010110
01001011
10110110

Because machine code directly manipulates a computer’s processor, it is a very powerful
paradigm. Programmers are not constrained when using machine code. Furthermore,
there is no need to translate machine code before executing it, making the paradigm
useful for embedded systems and real-time applications where speed of execution is
paramount.

 www.pmt.education

Assembly language
Assembly language was developed with the intention of simplifying the process of writing
computer programs. Mnemonics , such as ADD and MOV, are used in place of the binary
instructions that machine code uses. This makes assembly language more compact and
less error prone than machine code.

STR R4, #45
ADD R1, R2, 3
MOV R2, R1
HALT

Each assembly language instruction has a 1-to-1 correlation to a machine code instruction.
For example, the assembly language instruction MOV R2, R1 might be the exact
equivalent of the machine code instruction 11011101.

1 1 0 1 1 0 0 1

Four-bit identifier for the MOVE command

Two bits

representing the
number of a

register. In this
case, 2.

Two bits

representing the
number of a

register. In this
case, 1.

MOV R2 R1

AQA have made their own assembly language for use in
exams. You need to make sure you’re familiar with using it to
understand programs and even to write your own.

 www.pmt.education

High-level languages

High-level languages are the type of programming language that you’re most likely used to
using. Examples of high-level languages include C#, Java, Pascal, Python and VB.Net.

Unlike low-level languages, high-level languages are not
platform specific . However, high-level languages must be
translated into machine code by a compiler or an interpreter
before they can be executed.

High-level languages don’t use binary digits or mnemonics
but use English instructions like “While” and mathematical
symbols like “+”. This makes high-level languages much easier for humans to learn and
understand as well as making them easier to debug .

Most high-level languages allow programmers to make use of built-in functions. These can
save vast amounts of time when programming.

Features such as named variables, indentation and
commenting make programs written in high-level languages
far easier to debug than those written in low-level languages.

While x < y
x = x + y

End While

High-level languages include imperative high-level languages. In a similar way to low-level
languages, imperative high-level languages are formed from instructions that specify how
the computer should complete a task, in contrast to declarative programming which
describes what a computer should do.

 www.pmt.education

High-level languages vs. low-level languages

 Low-level High-level

 Machine code Assembly language

Portability Not portable. Programs are processor specific .
Portable. Programs are
not specific to certain

processors.

Ease of use
Code is difficult for

humans to
understand.

Mnemonics help to
make code slightly

easier for humans to
understand.

Code uses English,
making it easy for

humans to understand.

Ease of
debugging

Errors are very
difficult to spot and

correct.

Debugging is easier
than with machine code
but still far more difficult

than with high-level
languages.

Named variables,
indentation and

commenting make
debugging fairly easy.

Ease of
execution

Machine code is
directly executed by

processors.

An assembler must be
used before a program
is executed, but each

instruction has a 1-to-1
correlation to a
machine code
instruction so

translation is quick.

A compiler or interpreter
must be used to

translate source code
into object code before
it can be executed. This
can be time consuming.

 www.pmt.education

